Sulf1 has ligand-dependent effects on canonical and non-canonical Wnt signalling
نویسندگان
چکیده
Wnt signalling plays essential roles during embryonic development and is known to be mis-regulated in human disease. There are many molecular mechanisms that ensure tight regulation of Wnt activity. One such regulator is the heparan-sulfate-specific 6-O-endosulfatase Sulf1. Sulf1 acts extracellularly to modify the structure of heparan sulfate chains to affect the bio-availability of Wnt ligands. Sulf1 could, therefore, influence the formation of Wnt signalling complexes to modulate the activation of both canonical and non-canonical pathways. In this study, we use well-established assays in Xenopus to investigate the ability of Sulf1 to modify canonical and non-canonical Wnt signalling. In addition, we model the ability of Sulf1 to influence morphogen gradients using fluorescently tagged Wnt ligands in ectodermal explants. We show that Sulf1 overexpression has ligand-specific effects on Wnt signalling: it affects membrane accumulation and extracellular levels of tagged Wnt8a and Wnt11b ligands differently, and inhibits the activity of canonical Wnt8a but enhances the activity of non-canonical Wnt11b.
منابع مشابه
The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملCholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling
Wnt proteins control diverse biological processes through β-catenin-dependent canonical signalling and β-catenin-independent non-canonical signalling. The mechanisms by which these signalling pathways are differentially triggered and controlled are not fully understood. Dishevelled (Dvl) is a scaffold protein that serves as the branch point of these pathways. Here, we show that cholesterol sele...
متن کاملOff-track takes Frizzled off the canonical path.
Like many other signalling pathways, the Wnt pathway is seen as part of a network that integrates extracellular information mediated by a variety of cell surface proteins to produce cell context-specific outputs. The identification of Frizzled as Wnt receptors (Bhanot et al, 1996) provided the essential link between extracellular Wnts and the intracellular components of Wnt signal transduction....
متن کاملNon-Canonical Wnt Predominates in Activated Rat Hepatic Stellate Cells, Influencing HSC Survival and Paracrine Stimulation of Kupffer Cells
The Wnt system is highly complex and is comprised of canonical and non-canonical pathways leading to the activation of gene expression. Our aim was to examine changes in the expression of Wnt ligands and regulators during hepatic stellate cell (HSC) transdifferentiation and assess the relative contributions of the canonical and non-canonical Wnt pathways in fibrogenic activated HSC. The express...
متن کاملWnt ligand required for regulating vertebrate heart development via the canonical Wnt pathway, but surprisingly discovered a function at later stages of development, during organogenesis preceding cardiomyocyte differentiation
INTRODUCTION During vertebrate embryonic development, heart progenitors acquire the potential to subsequently differentiate as cardiomyocytes in the myocardium and form the functional heart muscle (Mohun et al., 2000; Mohun et al., 2003; Nakajima et al., 2009). Identifying how these cardiac progenitors are controlled and the source of signals regulating differentiation is of fundamental importa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 128 شماره
صفحات -
تاریخ انتشار 2015